864 research outputs found

    Confocal Ellipsoidal Reflector System for a Mechanically Scanned Active Terahertz Imager

    Get PDF
    We present the design of a reflector system that can rapidly scan and refocus a terahertz beam for high-resolution standoff imaging applications. The proposed optical system utilizes a confocal Gregorian geometry with a small mechanical rotating mirror and an axial displacement of the feed. For operation at submillimeter wavelengths and standoff ranges of many meters, the imaging targets are electrically very close to the antenna aperture. Therefore the main reflector surface must be an ellipse, instead of a parabola, in order to achieve the best imaging performance. Here we demonstrate how a simple design equivalence can be used to generalize the design of a Gregorian reflector system based on a paraboloidal main reflector to one with an ellipsoidal main reflector. The system parameters are determined by minimizing the optical path length error, and the results are validated with numerical simulations from the commercial antenna software package GRASP. The system is able to scan the beam over 0.5 m in cross-range at a 25 m standoff range with less than 1% increase of the half-power beam-width

    Time-Delay Multiplexing of Two Beams in a Terahertz Imaging Radar

    Get PDF
    We demonstrate a time-delay multiplexing technique that doubles the frame rate of a 660–690-GHz imaging radar with minimal additional instrument complexity. This is done by simultaneously projecting two offset, orthogonally polarized radar beams generated and detected by a common source and receiver. Beam splitting and polarization rotation is accomplished with a custom designed waveguide hybrid coupler and twist. A relative time lag of approximately 2 ns between the beams’ waveforms is introduced using a quasi-optical delay line, followed by spatial recombination using a selectively reflective wire grid. This delay is much longer than the approximately 20-ps time-of-flight resolution of the 30-GHz bandwidth radar, permitting the two beams’ reflected signals from a compact target to be easily distinguished in digital post-processing of the single receiver channel

    Bildfolgenanalyse in der Umweltphysik: Wasseroberflächenwellen und Gasaustausch zwischen Atmosphäre und Gewässern

    Get PDF
    Bildsequenzen von Wasseroberflächenwellen und Grenzschicht werden als neue Anwendung der Bildfolgenanalyse vorgestellt. Die Möglichkeiten der Auswertung mit Hilfe der Fouriertransformation und der Laplace- Pyramide werden diskutiert. Die quantitative Bildanalyse eröffnet weit reichende experimentelle Möglichkeiten für diesen Bereich der Umweltphysik; zugleich können sich aber auch Anstöße für die Weiterentwicklung der Bildfolgenanalyse als Methode ergeben

    Penetrating 3-D Imaging at 4- and 25-m Range Using a Submillimeter-Wave Radar

    Get PDF
    We show experimentally that a high-resolution imaging radar operating at 576–605 GHz is capable of detecting weapons concealed by clothing at standoff ranges of 4–25 m. We also demonstrate the critical advantage of 3-D image reconstruction for visualizing hidden objects using active-illumination coherent terahertz imaging. The present system can image a torso with <1 cm resolution at 4 m standoff in about five minutes. Greater standoff distances and much higher frame rates should be achievable by capitalizing on the bandwidth, output power, and compactness of solid state Schottky-diode based terahertz mixers and multiplied sources

    Lessons Learned: Using the Caprini Risk Assessment Model to Provide Safe and Efficacious Thromboprophylaxis Following Hip and Knee Arthroplasty

    Get PDF
    © The Author(s) 2020. Two of the more common potential complications after arthroplasty are venous thromboembolism (VTE), which includes deep vein thrombosis (DVT) and pulmonary embolus (PE), and excess bleeding. Appropriate chemoprophylaxis choices are essential to prevent some of these adverse events and from exacerbating others. Risk stratification to prescribe safe and effective medications in the prevention of postoperative VTE has shown benefit in this regard. The Department of Orthopaedic Surgery at Syosset Hospital/Northwell Health, which performs over 1200 arthroplasties annually, has validated and is using the 2013 version of the Caprini Risk Assessment Model (RAM) to stratify each patient for risk of postoperative VTE. This tool results in a culling of information, past and present, personal and familial, that provides a truly thorough evaluation of the patient’s risk for postoperative VTE. The Caprini score then guides the medication choices for thromboprophylaxis. The Caprini score is only valuable if the data is properly collected, and we have learned numerous lessons after applying it for 18 months. Risk stratification requires practice and experience to achieve expertise in perioperative patient evaluation. Having access to pertinent patient information, while gaining proficiency in completing the Caprini RAM, is vital to its efficacy. Ongoing, real time analyses of patient outcomes, with subsequent change in process, is key to improving patient care

    High-resolution three-dimensional imaging radar

    Get PDF
    A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband

    Improvements in Speed and Functionality of a 670-GHz Imaging Radar

    Get PDF
    Significant improvements have been made in the instrument originally described in a prior NASA Tech Briefs article: Improved Speed and Functionality of a 580-GHz Imaging Radar (NPO-45156), Vol. 34, No. 7 (July 2010), p. 51. First, the wideband YIG oscillator has been replaced with a JPL-designed and built phase-locked, low-noise chirp source. Second, further refinements to the data acquisition and signal processing software have been performed by moving critical code sections to C code, and compiling those sections to Windows DLLs, which are then invoked from the main LabVIEW executive. This system is an active, single-pixel scanned imager operating at 670 GHz. The actual chirp signals for the RF and LO chains were generated by a pair of MITEQ 2.5 3.3 GHz chirp sources. Agilent benchtop synthesizers operating at fixed frequencies around 13 GHz were then used to up-convert the chirp sources to 15.5 16.3 GHz. The resulting signals were then multiplied 36 times by a combination of off-the-shelf millimeter- wave components, and JPL-built 200- GHz doublers and 300- and 600-GHz triplers. The power required to drive the submillimeter-wave multipliers was provided by JPL-built W-band amplifiers. The receive and transmit signal paths were combined using a thin, high-resistivity silicon wafer as a beam splitter. While the results at present are encouraging, the system still lacks sufficient speed to be usable for practical applications in a contraband detection. Ideally, an image acquisition speed of ten seconds, or a factor of 30 improvement, is desired. However, the system improvements to date have resulted in a factor of five increase in signal acquisition speed, as well as enhanced signal processing algorithms, permitting clearer imaging of contraband objects hidden underneath clothing. In particular, advances in three distinct areas have enabled these performance enhancements: base source phase noise reduction, chirp rate, and signal processing. Additionally, a second pixel was added, automatically reducing the imaging time by a factor of two. Although adding a second pixel to the system doubles the amount of submillimeter components required, some savings in microwave hardware can be realized by using a common low-noise source
    corecore